์ด๊ฒƒ์˜ ์–ด๋ ค์šด ์ฆ๋ช…๊ณผ ์‰ฌ์šด ์ฆ๋ช…

Stirling's Approximation

Math Jun 21, 2025
๐Ÿ’ฌ
์ด ๊ธ€์€ Park Jonghwi ์˜ ๊ธ€ [Stirling's Approximation] ์™€ Lee JunSeok ์˜ ๊ธ€ [์Šคํ„ธ๋ง ๊ทผ์‚ฌ : ๋…ธ๋ฒ ์ด์Šค ์ฆ๋ช…] ์˜ ๋‚ด์šฉ์„ ํ•ฉ์นœ ๊ธ€์ด๋‹ค.

Introduction

์œ„์—์„œ ์–ธ๊ธ‰๋œ ๋‘ ๊ธ€์—์„œ๋Š” ๊ฐ๊ฐ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์œผ๋กœ ์Šคํ„ธ๋ง ๊ทผ์‚ฌ๋ฅผ ์œ ๋„ํ–ˆ๋‹ค. ํ•˜๋‚˜์˜ ๊ธ€์—์„œ๋Š” ํŒฉํ† ๋ฆฌ์–ผ์„ ๊ฐ๋งˆ ํ•จ์ˆ˜๋กœ ํ‘œํ˜„ํ•˜๊ณ  ๊ฐ๋งˆ ๋ถ„ํฌ์˜ ์„ฑ์งˆ์„ ์ด์šฉํ•˜์—ฌ ์Šคํ„ธ๋ง ๊ทผ์‚ฌ๋ฅผ ์œ ๋„ํ•˜์˜€๊ณ , ๋‹ค๋ฅธ ๊ธ€์—์„œ๋Š” ํŒฉํ† ๋ฆฌ์–ผ์— ์ž์—ฐ๋กœ๊ทธ๋ฅผ ์ทจํ•œ ํ›„ ๋ฆฌ๋งŒํ•ฉ์„ ์ด์šฉํ•˜์—ฌ ์Šคํ„ธ๋ง ๊ทผ์‚ฌ๋ฅผ ์œ ๋„ํ•ด๋‚ด์—ˆ๋‹ค. ๋‹ค์Œ์€ ๊ฐ๊ฐ์˜ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ƒ์„ธ ์„ค๋ช…์ด๋‹ค.


Proof 1 (๊ฐ๋งˆ ํ•จ์ˆ˜ ์ด์šฉ)

๋จผ์ €, ์ฆ๋ช…์„ ์œ„ํ•ด์„œ \(n!\) ์„ ๊ฐ๋งˆ ํ•จ์ˆ˜ ํ‘œํ˜„์œผ๋กœ ๊ณ ์น˜๋„๋ก ํ•˜์ž.

\[n! = \Gamma(n+1) = \int\nolimits_{0}^{\infty}x^n e^{-x}\mathrm{d}x\]

์ด๋•Œ, ํ”ผ์ ๋ถ„ ํ•จ์ˆ˜๊ฐ€ ๊ฐ๋งˆ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

๊ฐ๋งˆ ๋ถ„ํฌ์˜ ํ™•๋ฅ  ๋ฐ€๋„ ํ•จ์ˆ˜
\[f(x;k,\theta) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}\space \texttt{for}\space x>0\]
์ด๋•Œ, \(k(>0)\) ๋Š” ํ˜•์ƒ๋ชจ์ˆ˜์ด๊ณ , \(\theta(>0)\) ๋Š” ์ฒ™๋„๋ชจ์ˆ˜์ด๋‹ค. ๋‘˜๋‹ค ์ƒ์ˆ˜์ด๋‹ค.

๊ฐ๋งˆ ๋ถ„ํฌ๋Š” \(n\) ์ด ๋งค์šฐ ํด ๊ฒฝ์šฐ ์ค‘์‹ฌ ๊ทนํ•œ ์ •๋ฆฌ์— ์˜ํ•ด ์ •๊ทœ ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ๊ทผ์‚ฌ๋ฅผ ์œ„ํ•ด์„œ ์šฐ๋ฆฌ๊ฐ€ ๋” ๋‹ค๋ฃจ๊ธฐ ์‰ฌ์šด ๊ผด์ธ ์ •๊ทœ ๋ถ„ํฌ์˜ ํ˜•ํƒœ๋กœ ์‹์„ ๋ฐ”๊ฟ” ๋ณด์ž.

ํ”ผ์ ๋ถ„ ํ•จ์ˆ˜์˜ ๊ผด์„ ๋ฐ”๊ฟ”๋ณด๋ฉด,

\[x^n e^{-x} = e^{n\ln x -x}\]

์ด์ œ \(y = x-n\)์œผ๋กœ ์น˜ํ™˜ํ•˜๊ณ  ์‹์„ ์ „๊ฐœํ•˜๋ฉด,

\[n\ln x -x = n\ln(n+y)-n-y\\ \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=n\ln\left[n\left(1+\frac{y}{n}\right)\right]-n-y\\ \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=n\ln n -n + n\ln\left(1+\frac{y}{n}\right)-y\]

์ด์ œ, ์—ฌ๊ธฐ์„œ ์ •๊ทœ ๋ถ„ํฌ์˜ ํ˜•ํƒœ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ \(\ln\left(1+\frac{y}{n}\right)\) ๋ฅผ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœํ•˜์—ฌ 2 ์ฐจ ํ•ญ๊นŒ์ง€ ๋‚˜ํƒ€๋‚ด๋ฉด,

\[\ln\left(1 + \frac{y}{n}\right) \approx \frac{y}{n} - \frac{1}{2} \left(\frac{y}{n}\right)^2\]

์œ„์˜ ์‹์„ ๋Œ€์ž…ํ•˜์—ฌ ์ตœ์ข…์ ์ธ ํ”ผ์ ๋ถ„ ํ•จ์ˆ˜์˜ ๊ทผ์‚ฌ์‹์„ ๊ตฌํ•˜๋ฉด,

\[x^n e^{-x} \approx n^n e^{-n} e^{-\frac{y^2}{2n}}\]

์ด๋•Œ ๊ฐ๋งˆ ๋ถ„ํฌ๋ฅผ ์ •๊ทœ๋ถ„ํฌ์— ๊ทผ์‚ฌํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์—, \(y<0\)์ธ ์˜์—ญ์€ 0์— ๊ฐ€๊น๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋“  \(y\)์— ๋Œ€ํ•˜์—ฌ ์ ๋ถ„ํ•˜๋ฉด,

\[n! = \int_0^\infty x^n e^{-x} \,\mathrm{d}x \approx n^n e^{-n} \int_{-\infty}^\infty e^{-\frac{y^2}{2n}} \, \mathrm{d}y = n^n e^{-n} \sqrt{2\pi n}\]

\[\therefore n!\sim\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\]

Proof 2 (๋ฆฌ๋งŒํ•ฉ ์ด์šฉ)

ํŒฉํ† ๋ฆฌ์–ผ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋น„์œจ์ ์œผ๋กœ ๊ทผ์‚ฌ๋œ๋‹ค.

\[ n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \]

๊ณง,

\[ \lim_{n \to \infty} \, \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1\]

์ฆ๋ช…์˜ ์‹œ์ž‘์€ ๊ณฑ์„ ํ•ฉ์œผ๋กœ ๋ฐ”๊พธ๋Š” ๊ฒƒ์ด๋‹ค. ์ฆ‰ \( \ln \)์„ ์‚ฌ์šฉํ•œ๋‹ค.

\[ \ln(n!) = \sum_{k=1}^{n} \ln(k) \]

์ด๋•Œ ์šฐ๋ณ€์„ ๋ณด๋ฉด ๋ฆฌ๋งŒ ์ ๋ถ„์˜ ๊ทผ์‚ฌ์‹์ฒ˜๋Ÿผ ๋ณด์ธ๋‹ค.

\[ \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=0}^{n} f(a+ \frac{b-a}{n} k) \frac{b-a}{n} \]

์—์„œ \( f(x) = \ln(x) \)์ผ๋•Œ ๊ตฌ๊ฐ„์˜ ๋ถ„ํ•  ๊ฐ„๊ฒฉ์„ ๋‚˜ํƒ€๋‚ด๋Š” \( \frac{b-a}{n} \)์„ \( 1\)๋กœ ๋ฐ”๊ฟ” ์ƒํ™ฉ์— ๋งž๋„๋ก ๊ทผ์‚ฌํ•˜์ž.

\[ \int_{a}^{n+a} \ln x dx \approx \sum_{k=0}^{n} \ln(a+ k) \]

\( a=1\) ์ธ ์ƒํ™ฉ์—์„œ \( n+1\) ์„ ๋‹ค์‹œ \(n\)์œผ๋กœ ๋ฐ”๊พผ๋‹ค.

\[ \int_{1}^{n} \ln x dx \approx \sum_{k=1}^{n} \ln(k) \]

์ด ๊ทผ์‚ฌ์—์„œ ์•„์ด๋””์–ด๋ฅผ ์–ป๋Š”๋‹ค.

๋นจ๊ฐ„์ƒ‰: lnx , ํŒŒ๋ž€์ƒ‰: ln(x+1)

Desmos๋ฅผ ์ž˜ ๋ชป ์จ ๊ทธ๋ฆผ์ด ์ข€ ๋”๋Ÿฝ๋‹ค.

ํ•ด๋‹น ๊ทผ์‚ฌ๋ฅผ ๋ฐ”๋กœ ์‚ฌ์šฉํ•˜๊ธฐ์—๋Š”

\[ \ln n - \int_{n-1}^{n} \ln x dx \]

์˜ ์˜ค์ฐจ(์œ„ ์‚ฌ๊ฐํ˜• ์ค‘ ๋นจ๊ฐ„ ๊ณก์„  ์œ„์— ์žˆ๋Š” ๋ถ€๋ถ„)์ด ์กฐ๊ธˆ ๊ฑฐ์Šฌ๋ฆด ์ˆ˜ ์žˆ๋‹ค.

์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด \( y= \ln(x+1) \)์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•œ๋‹ค.

\[ \lim_{x \to \infty} \left( \frac{d^2}{dx^2} \ln x = - \frac{1}{x^2} \right) =0\]

์ด๋ฏ€๋กœ \( y=\ln x \)์˜ ๊ทธ๋ž˜ํ”„๋Š” ๊ฒฐ๊ตญ ์ง์„ ์œผ๋กœ ๊ทผ์‚ฌ๋œ๋‹ค.

์ฆ‰, ํฐ ์ž์—ฐ์ˆ˜ \( n\)์— ๋Œ€ํ•ด \( \{(x, \, y) \vert \, n \le x \le n+1 \, , \, \ln x \le y \le \ln (n+1) \} \) ์˜ ๋„“์ด๋Š” ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์œผ๋กœ ๊ทผ์‚ฌ๋˜๋Š” \( \{(x, \, y) \vert \, n \le x \le n+1 \, , \, \ln x \le y \le \ln (x+1) \} \)์˜ ๋„“์ด๋ฅผ ์ด๋“ฑ๋ถ„ํ•œ๋‹ค๊ณ  ๊ณ„์‚ฐํ•œ๋‹ค.

์ฆ‰, \( \ln n! \)์€ \( \int_{1}^{n} \ln x \, dx \) ์™€ \( \int_{1}^{n} \ln (x+1) \, dx \)์˜ ์‚ฐ์ˆ  ํ‰๊ท ์œผ๋กœ ๊ณ„์‚ฐํ•œ๋‹ค. ์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋ฉด

\[ \ln n! \approx \left( n + \frac{1}{2} \right) \ln n -n +a \]

์ด๋•Œ a๋Š” ์ดˆ๋ฐ˜์— ๋‘๋“œ๋Ÿฌ์ง€๋Š” ์„ ํ˜•์ ์ธ ์˜ค์ฐจ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํ˜„์žฌ ์šฐ๋ฆฌ๋Š” \( \ln n! \)์˜ ๊ทผ์‚ฌ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด์˜ ์„ ํ˜•์ ์ธ ์˜ค์ฐจ๋Š” \( n! \) ์˜ ๋น„์œจ์  ์˜ค์ฐจ๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ๋น„์œจ ๊ทผ์‚ฌ๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ด๋ฅผ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค.

์ผ๋‹จ ์‹์„ \( n! \) ์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜๊ณ  ๋ณด๊ธฐ ์ข‹๊ฒŒ ๋ฐ”๊พธ๋ฉด ์ƒ์ˆ˜ c์— ๋Œ€ํ•ด

\[ n! \approx c \sqrt{n} \left(\frac{n}{e}\right)^n \]

์ด๋‹ค.

c์˜ ๊ฐ’์„ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํŒฉํ† ๋ฆฌ์–ผ์ด ๋“ค์–ด๊ฐ„ ๋น„์œจ์˜ ๊ทนํ•œ ์‹์„ ํ™œ์šฉํ•˜๋ฉด ๋œ๋‹ค. ์ด ๊ธ€์—์„œ๋Š” Wallis' formula๋ฅผ ์‚ฌ์šฉํ•˜๊ฒ ๋‹ค. ์ฆ๋ช…์ด ์–ด๋งˆ์–ด๋งˆํ•˜๊ฒŒ ๋‹ค์–‘ํ•˜๋‹ค.

\[ \prod_{n=1}^{\infty} \frac {(2n) \cdot (2n)}{(2n-1) \cdot (2n+1)} = \frac{\pi}{2} \]

๋ฃจํŠธ๋ฅผ ์”Œ์šฐ๊ณ  ๊ณฑํ•˜๋Š” ๊ฐœ์ˆ˜๊ฐ€ ๋ฌดํ•œ๋Œ€๋กœ ๊ฐ€์ง€ ์•Š๊ณ  ์ถฉ๋ถ„ํžˆ ํฐ ์ƒํ™ฉ์„ ๊ฐ€์ •ํ•˜๋ฉด

\[ \prod \frac {2n}{\sqrt{(2n-1) \cdot (2n+1)}} \approx \sqrt{\frac{\pi}{2}} \]

์ด๋•Œ ์ฒซ \( (2n-1)\)์€ 1์ด๊ณ , ๋งˆ์ง€๋ง‰ \( (2n+1) \)์€ ๋”ฐ๋กœ ์ƒ๊ฐํ•œ๋‹ค.

\[ \frac {\prod_{k=1}^{n} (2k)}{\sqrt{2n+1} \prod_{k=1}^{n} (2k-1)} \approx \sqrt{\frac{\pi}{2}} \]

\( \prod_{k=1}^{n} (2k) = 2^n n! \) ์ด๊ณ  \( \prod_{k=1}^{n} (2k-1) = \frac{(2n)!}{2^n n!} \) ์ด๋ฏ€๋กœ \( n! \approx c \sqrt{n} \left(\frac{n}{e}\right)^n \) ๋ฅผ ๋Œ€์ž…ํ•˜๋ฉด,

\[ \frac{c}{2} = \sqrt{\frac{\pi}{2}} \]

์ฆ‰,

\[c = \sqrt{2\pi} \]

๋”ฐ๋ผ์„œ ์ฆ๋ช…์ด ์™„์„ฑ๋˜์—ˆ๋‹ค.

\[ n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \]


Conclusion

์Šคํ„ธ๋ง ๊ทผ์‚ฌ๋Š” ๋ฌผ๋ฆฌ์—์„œ๋„ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ๋งŽ์€ ๋ถ„์•ผ์—์„œ ์œ ์šฉํ•˜๊ฒŒ ์“ฐ์ด๋Š” ๊ต‰์žฅํžˆ ์œ ๋ช…ํ•œ ๊ทผ์‚ฌ์ด๋ฏ€๋กœ ์ž˜ ์•Œ์•„๋‘๋„๋ก ํ•˜์ž.

Tags

Park Jonghwi

Along with Lee JunSeok

25 KSA. Physics major. Loves planes, music, cars, etc.